Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. Hydrogen recombination lines (HRLs) are valuable diagnostics of the physical conditions in ionized regions surrounding high-mass stars. Understanding these lines, including broadening mechanisms and intensity trends, can provide insights into HII region densities, temperatures, and kinematics. Aims. This study aims to investigate the physical properties of ionized gas around massive protostars by analysing the HRLs (Hαand Hβ) in the Q band. Methods. We carried out observations using the Yebes 40m radio telescope in the Q band (30.5–50 GHz) towards six high-mass protostars selected from the SOMA Survey (G45.12+0.13, G45.47+0.05, G28.20−0.05, G35.20−0.74, G19.08−0.29, and G31.28+0.06). The observed line profiles were analysed to assess broadening mechanisms, and electron densities and temperatures were derived. The results were compared with available Q-band data from the TianMa 65-m Radio Telescope (TMRT) that have been reported in the literature, and ALMA Band 1 (35–50 GHz) Science Verification observations towards Orion KL, analysed in this study. Results. A total of eight Hα(n = 51 to 58) and ten Hβ(n = 64 to 73) lines were detected towards G45.12+0.13, G45.47+0.05, and G28.20−0.05; there were no detections in other sources. We derived electron densities of ~1−5 × 106cm−3and temperatures of 8000–10 000 K for the sources. However, for Orion KL, we obtained an electron density one order of magnitude lower, while its temperature was found to be more similar. Interestingly, G45.12 and G28.20 show an increasing intensity trend with frequency for both Hαand Hβtransitions, contrary to the decreasing trend observed in Orion KL. Conclusions. The line widths of the detected HRLs indicate contributions from both thermal and dynamical broadening, suggesting the presence of high-temperature ionized gas that is likely kinematically broadened (e.g. due to turbulence, outflows, rapid rotation, or stellar winds). Pressure broadening caused by electron density may also have a minor effect. We discuss different scenarios to explain the measured line widths of the HRLs. The contrasting intensity trends between the sources may reflect variations in local physical conditions or radiative transfer effects, highlighting the need for further investigation through higher-resolution observations and detailed modelling.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Abstract Photodissociation regions (PDRs) are key to understanding the feedback processes that shape interstellar matter in galaxies. One important type of PDR is the interface between Hiiregions and molecular clouds, where far-ultraviolet radiation from massive stars heats gas and dissociates molecules. Photochemical models predict that as metallicity decreases, the C/CO transition occurs at greater depths in the PDR compared to the H/H2transition, increasing the extent of CO-dark H2gas in low-metallicity environments. This prediction has been difficult to test outside the Milky Way due to the lack of high-spatial-resolution observations tracing H2and CO. This study examines a low-metallicity PDR in the N13 region of the Small Magellanic Cloud (SMC), where we spatially resolve the ionization front, the H2dissociation front, and the C/CO transition using12COJ= 2−1, 3−2, and [CI] 1–0 observations from the Atacama Large Millimeter/submillimeter Array and near-infrared spectroscopy of the H22.12 1–0 S(1) vibrational line, and H recombination lines from the James Webb Space Telescope. Our analysis shows that the separation between the H/H2and C/CO boundaries is approximately 0.043 ± 0.013(stat.) ± 0.0036(syst.) pc (equivalent to at the SMC’s distance of 62 kpc), defining the spatial extent of the CO-dark H2region. Compared to our plane-parallel PDR models, we find that a constant-pressure model matches the observed structure better than a constant-density one. Overall, we find that the PDR model does well at predicting the extent of the CO-dark H2layer in N13. This study represents the first resolved benchmark for low-metallicity PDRs.more » « lessFree, publicly-accessible full text available September 9, 2026
An official website of the United States government
